Open main menu
SUPPORT DOCUMENTATION

Leap second support in Güralp Digitisers and Acquisition units

 

Background information

The earth's rotation is gradually slowing in an unpredictable manner. It is affected by, amongst other things, large earthquakes and volcanic eruptions. These alter the distribution of mass around the planet and, because angular momentum must be conserved, the rate of rotation must change, altering the duration of a day. The drag of the tides against the ocean-bottoms also slows the earth, converting some of its angular momentum into heat energy.

This leads to a problem when we try and define the basic unit of time; the second. We would like to have a fixed, constant duration for our standard second but the conventional, historical measurement of time is inextricably linked to a natural day of varying length. The solution is to define a fixed duration for the second but to change the length of the day (actually, it is the year that we change) when necessary. We call time based on the variable rotation of the Earth "Mean Solar Time" and time based on our fixed, standard second "Atomic Time" (TAI).

Because these two time definitions gradually drift out of synchronisation, we use a third definition, "Coordinated Universal Time" or UTC. This clicks along, second by second, with Atomic Time but, to keep it aligned with mean solar time, an extra second - known as a leap second - is added to or subtracted from UTC every few years. (So far, they have only ever been added.) The process is managed by the International Earth Rotation and Reference Systems Service (IERS), who issue a twice-yearly bulletin - "Bulletin C" - which either announces a time step in UTC, or confirms that there will be no time step at the next possible date. You can visit their web site, register and subscribe to this bulletin in order to receive advance notifications of leap seconds. See the IERS bulletins page for more information.

Since the system was set up in 1972, there have been 26 leap seconds; all either at the end of June or the end of December (although the IERS reserve the right to add them at the end of March or September, if necessary.

At the time of writing, the last leap second was at the end of December 31st, 2016 and the IERS have confirmed that there will be no leap second at the end of December, 2020.

Güralp digitisers synchronise their internal clocks to GNSS systems such as Navstar/GPS, GLONASS, Galileo and Baidou. This article will focus on Navstar/GPS, which is currently the most common amongst our customers. The GPS system uses its own time standard, known as GPS time (GPST). GPST and UTC coincided in 1980 but have diverged since, because of leap seconds. GPST does not account for leap seconds so GPS receivers have to perform a correction before they can provide UTC as output. To facilitate this, the GPS navigation message, which is transmitted to the receiver by the satellite fleet, includes the difference between GPS time and UTC, known as the UTC offset. As of January 2017, the offset is 17, meaning that GPS time is 17 seconds ahead of UTC. GPS receivers subtract this offset from GPS time to calculate UTC.

Some new GPS units, including the u-blox chip-set used in the latest Güralp receivers, do not show the correct UTC time until after receiving the UTC offset message, which may be after several minutes. Güralp receivers include an additional micro-processor, integrated into the receiver, which stores the current UTC offset and informs the chip-set of the correct value as soon as it powers up.

To signal a leap second to a connected device, such as a digitiser, the GPS receiver inserts the special time "23:59:60" between 23:59:59 and 00:00:00. The last minute of the month has, therefore, 61 seconds, numbered 0 to 60.

DM24s and CD24s

Güralp DM24 and CD24 digitisers (including those in *TD and *TDE instruments) understand leap seconds and will time-stamp their data accordingly. If, for any reason, the GPS message sent at the exact leap second is missed, the digitiser will re-synchronise shortly after receiving the next GPS message but a segment of data will then have incorrect time-stamps. To avoid this, you can warn your digitiser about the upcoming leap second with the command

2016 12 31 LEAPSECOND

When using high sample rates (200 sps and above), there have been occasional reports of digitisers producing output data before the GPS receiver has finished transmitting the "23:59:60" message. This can result in time-stamps which are one second out. This problem can be avoided by issuing the LEAPSECOND command as described above.

When used with the latest Güralp receivers (those based on the u-blox chip-set), Güralp DM24 and CD24 digitisers will automatically issue this command for you, so no special action is required. Up-to-date digitiser firmware is required for this to work correctly.

To identify u-blox-based GPS receivers, check the status stream after boot-up (or after briefly disconnecting and then reconnecting the receiver). Output like

Guralp Systems Ltd - UbloxGPS v1.0 mgs 07/08/14 (Build 1.08)

shows that you have a u-blox-based receiver. If the build number shown in your system is less than 1.08, please contact for advice about upgrading it.

We recommend always running the latest firmware on Güralp digitisers.

Platinum systems

Affinity systems, EAMs and other Platinum systemA "Platinum system" is any system running the Platinum operating system. This includes stand-alone acquisition systems such as EAMs and NAMs, DAS units such as the Affinity and DM24SxEAM and digital instruments with built-in acquisition systems such as the 3TDE, 40TDE or 5TDE.s will periodically check the Internet for notifications of leap seconds. If, however, a system cannot access the Internet, this process will fail. You can manually notify a Platinum system of the upcoming leap second in a number of ways:

You can check that /usr/share/libiso8601/leap-table is up to date by comparing its check-sum to that of the current file. The output from the command

sum /usr/share/libiso8601/leap-table

is currently

30797 1

If you have an Internet connection, you can simply run /etc/cron.weekly/update-libiso8601-leaptable and the check the end of the file /var/log/messages. You should see a line like

Oct 14 11:30:11 EAM999 user.notice iso8601-leaptable: no update necessary

indicating that the file is up to date.

We recommend always running the latest firmware on Platinum systems.

Minimus and Radian

The very latest Güralp digitisers and digital instruments, Minimus and Radian, do not currently have leap second support. They will re-synchronise shortly after receiving the next GPS message after the leap second.

GCF and Scream!

The GCF file format supports leap seconds. Other, third-party file formats have varying degrees of support. Please contact if you need more information about any of these issues.

Scream's WaveView windows will not show a leap second on the time scale (x-axis). If the displayed data span a leap second, traces will be shown overlapping for a second at the start of the next GCF packet. All features will work as expected.

Historical Problems

Around 2005, Trimble manufactured GPS receiver chip-sets with a bug in their firmware which caused incorrect time-stamps between the announcement of the leap second and its scheduled time - i.e. the leap second was implemented when announced rather than when scheduled. Many of these systems were shipped and incorporated into Güralp products before the problem was noticed. We provided a special firmware facility to correct for this, which you can read about here. A firmware update for the receivers was released some time afterwards and should, by now, have been implemented on all affected systems. If you have GPS receivers from this period and you suspect that they have not been updated, please contact for advice.

Further Information

If you would like any more information about leap seconds or if you have any concerns about your deployed equipment, please contact .